
The density dependence of the velocity of sound  in expanded liquid mercury studied by

means of a large-scale molecular-dynamics simulation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 4963

(http://iopscience.iop.org/0953-8984/10/23/005)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 12/05/2010 at 23:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/23
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 4963–4974. Printed in the UK PII: S0953-8984(98)92658-3

The density dependence of the velocity of sound in
expanded liquid mercury studied by means of a large-scale
molecular-dynamics simulation

Shuji Munejiri, Fuyuki Shimojo and Kozo Hoshino
Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521,
Japan

Received 20 March 1998, in final form 28 April 1998

Abstract. The density dependence of the velocity of sound in liquid mercury along the
liquid–vapour coexistence curve is investigated by means of a large-scale molecular-dynamics
simulation using the effective pair potential derived from the experimental structure factor by the
inverse method. The resulting velocity of sound is in very good agreement with experiment and
its density dependence changes at 9 g cm−3, at which point the metal–nonmetal transition occurs.
It is shown that the repulsive part of the effective pair potential plays a crucially important role
in the density dependence of the velocity of sound in liquid mercury.

1. Introduction

The velocities of sound in fluid mercury have been measured over a wide range of density
from the triple point to the supercritical region. It was discovered for the first time by Suzuki
et al [1] that the density dependence of the velocity of sound in liquid mercury changes
at the density 9 g cm−3, at which point the metal–nonmetal (M–NM) transition occurs.
With density decreasing from the triple point, the velocity of sound decreases linearly until
the M–NM transition region is neared, whereas its rate of decrease becomes smaller over
that region until the critical region is neared. This feature has been confirmed by several
successive experiments [2–4]. The change of the density dependence of the velocity of
sound at the M–NM transition has been considered to be closely related to a change in the
interaction between atoms [1], though the relation between the interatomic interaction and
the velocity of sound is not well understood theoretically.

Recently, Nagelet al [5] calculated the structure factors of expanded liquid mercury for
a wide range of density using the effective pair potentials obtained from pseudopotential
perturbation theory for a metallic liquid and the Lennard-Jones potential for an insulating
vapour. They compared their results with experiments and concluded that further details
of the variation of the interatomic correlations with the density have to be included to
reproduce the experimental structure factors for a wide range of density. Though these pair
potentials are valid in the two corresponding limiting cases, they lose their validity for those
states that are near the M–NM transition. At present, there is no method of deriving the
effective pair potential for those states from first-principles theory.

In this situation, one of the most effective approaches is the inverse method, in which
the effective pair potential is derived from the experimental structure factor. Recently, we
have derived the effective pair potentials for expanded liquid rubidium and caesium for a
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wide range of density using the predictor–corrector method [6], which is one of the most
reliable methods for solving the inverse problem, and investigated the characteristic features
of their density dependences [7–9]. The purposes of this paper are as follows:

(i) to derive the effective pair potential from the experimental structural data for liquid
mercury for a wide range of density [10] using the inverse method and to investigate their
density dependences;

(ii) to calculate the velocity of sound by means of molecular-dynamics (MD) simulation
using the effective pair potentials thus obtained;

(iii) to clarify the relation between the density dependence of the velocity of sound and
that of the effective pair potential.

2. The method of calculation

2.1. The effective pair potential

In this section, the predictor–corrector method for solving the inverse problem is explained;
it is a combination of integral equation theory and computer simulation. In the integral
equation theory, the effective pair potentialφ(r) is given by the following closure relation:

βφ(r) = gexp(r)− 1− cexp(r)− ln gexp(r)+ Bexp(r) (1)

where gexp(r) is the experimental radial distribution function,cexp(r) the experimental
direct correlation function,Bexp(r) the experimental bridge function andβ = 1/kBT . The
functionsgexp(r) andcexp(r) can be directly obtained from the experimental structure factor
Sexp(k) by Fourier transformation and from the Ornstein–Zernike relation, respectively:

gexp(r) = 1+ 1

2π2nr

∫ ∞
0
(Sexp(k)− 1)k sin(kr) dk (2)

cexp(r) = 1

2π2nr

∫ ∞
0

(
1− 1

Sexp(k)

)
k sin(kr) dk (3)

wheren is the number density of the atoms. Though the key quantity in equation (1) is
Bexp(r), it cannot be obtained directly fromSexp(k). To overcome this difficulty, we employ
the bridge function of the hard-sphere systemBHS(r, η) as an initial estimate forBexp(r),
where the packing fractionη is determined so as to minimize the free energy [11] as is
usually done in the modified hypernetted-chain (MHNC) approximation [12]. Thus the
zeroth approximation for the effective pair potential is given by

βφ0(r) = gexp(r)− 1− cexp(r)− ln gexp(r)+ BHS(r, η). (4)

This approximation is called the predictor, and thenφ0(r) or BHS(r, η) is improved by the
following iterative procedure, which is called the corrector.

(i) The simulation is performed withφi(r) (=φ0(r) for the first run) and the radial
distribution functiongi(r) is obtained, wherei stands for theith step.

(ii) The structure factorSi(k) is obtained by Fourier transforminggi(r).
(iii) The direct correlation functionci(r) is obtained using equation (3), where the

subscript ‘exp’ is replaced byi.
(iv) The revised bridge functionBi(r) is given by

Bi(r) = βφi(r)− gi(r)+ 1+ ci(r)+ ln gi(r). (5)
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(v) The revised effective pair potentialφi+1(r) is then given by

βφi+1(r) = gexp(r)− 1− cexp(r)− ln gexp(r)+ Bi(r). (6)

The iterative process (i)–(v) is repeated until the difference|φi+1(r)−φi(r)| becomes smaller
than the desired accuracy and an accurate estimate forφ(r) is finally obtained. In this paper
we are concerned with liquid mercury at relatively high temperatures and low densities,
where the bridge function is expected to be small. If the contribution to the effective
pair potential from the bridge function is not important, not only the first estimate for
φ(r), whereBHS(r, η) is employed, but also the hypernetted-chain approximation, where
the bridge function is taken to be zero, are considered to be reasonable approximations for
the effective pair potential. This is the case, as will be shown in the following.

2.2. The dynamic structure factor and the velocity of sound

The velocity of sound is obtained by means of MD simulation as follows. First, the Fourier
transform of the number densitynk(t) is calculated from the configuration of atoms at each
MD step from

nk(t) =
N∑
i=1

exp(−ik · ri (t)) (7)

whereN is the total number of atoms. The intermediate scattering function is given by

F(k, t) = 1

N
〈nk(t)n−k(0)〉 (8)

where 〈· · ·〉 means the average over time steps. Note thatF(k, t) is an even function of
time and thatS(k) = F(k, 0). The dynamic structure factorS(k, ω) is given by the Fourier
transform ofF(k, t):

S(k, ω) = 1

2π

∫ ∞
−∞

F(k, t)exp(−iωt) dt = 1

π

∫ ∞
0
F(k, t) cos(ωt) dt. (9)

The dispersion relation ofS(k, ω) is obtained from the position of the side peakωp(k) of
S(k, ω). In the small-k region,ωp(k) satisfies the following relation:

ωp(k) = vsk (10)

wherevs is the velocity of sound. Thusvs can be obtained from the gradient of the dispersion
curve in the small-k region.

To derive the dispersion relation ofS(k, ω), we need to obtain theS(k, ω) which has
a clear side peak. In general, the side peak ofS(k, ω) is clearly seen for smallk and it
becomes less clear with increasingk. Near the triple point there exists a clear side peak
of S(k, ω) even for the relatively largek near the first peak position ofS(k). The side
peak for such a large-k region, however, disappears with decreasing density and increasing
temperature, and the clear side peak appears only in the very-small-k region. Therefore,
when the density is low and the temperature is high, the size of the MD cellL must be
large enough, i.e.kmin = 2π/L must be small enough, for the dynamic structure factor to
have a side peak, from which we can obtain the velocity of sound. Furthermore, we have to
continue the MD simulation for a very long time to obtain the spectrum of the correlation
functions for a long wavelength, because the longer the wavelength is, the more slowly its
density fluctuation decays. For these reasons, we perform in this paper a large-scale MD
simulation using parallel computers to obtain the velocity of sound in liquid mercury.
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As an alternative method for estimating the velocity of sound, the dispersion relation of
the spectrum of the longitudinal current correlation functionJl(k, ω) is often used.Jl(k, ω)

is related to the dynamic structure factorS(k, ω) as follows:

Jl(k, ω) = ω2

k2
S(k, ω). (11)

Unlike S(k, ω), Jl(k, ω) always has a dispersion peak over the wholek-region. When
S(k, ω) has a sharp side peak, the position of the peak ofJl(k, ω), ωmax(k), is almost the
same asωp(k) and hencevs obtained fromJl(k, ω) is the same as that obtained fromS(k, ω).
On the other hand, when the side peak ofS(k, ω) is broad or does not exist,vs obtained
from ωmax(k) is larger than the real velocity of sound. Therefore we have to calculatevs

from ωp(k) to get an accurate velocity of sound.
In addition to those quantities that we have just mentioned above, we also investigate

the density dependence of the self-diffusion coefficientD, which is calculated from the
relation

D = 1

3

∫ ∞
0
Z(t) dt (12)

whereZ(t) is the velocity autocorrelation function defined by

Z(t) = 1

N

N∑
i=1

〈vi (t) · vi (0)〉. (13)

Figure 1. The effective pair potentialsφ(r) for liquid mercury for the three states obtained by
the inverse method. The inset shows an enlarged view of the repulsive part ofφ(r).
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Table 1. The parameters used in our MD simulation for three thermodynamic states.

State T (K) ρ (g cm−3) n (Å−3) N L (Å) kmin (Å−1)

I 1273 10.98 0.032 964 8000 62.4 0.101

II 1673 9.25 0.027 770 8000 66.0 0.095
64 000 132.1 0.048

III 1803 6.8 0.020 415 8000 73.2 0.086
64 000 146.4 0.043

3. Results and discussion

3.1. The effective pair potential of expanded liquid mercury

The structure factors of fluid mercury,S(k), were measured by Tamura and Hosokawa [10]
using x-ray scattering for fifteen different thermodynamic states from the triple point up to
the supercritical region along the liquid–vapour coexistence curve. To investigate the density
dependence of the effective pair potentials, we choose three thermodynamic states: (I) the
metallic state (1273 K, 10.98 g cm−3), (II) the state near the M–NM transition (1673 K,
9.25 g cm−3) and (III) the non-metallic state (1803 K, 6.8 g cm−3). The effective pair
potentialsφ(r) are derived by the predictor–corrector method as mentioned in the previous
section. Since the bridge functions are small for these three states,φ(r) is almost the same
as its zeroth approximationφ0(r) within the experimental error. The three forms ofφ(r) for

Figure 2. (a) Normalized intermediate scattering functionsF(k, t)/S(k) for k = kmin =
0.10, 0.60 and 1.20 Å−1 for the state I (1273 K, 10.98 g cm−3) obtained by means of MD
simulation with 8000 atoms. (b) The corresponding dynamic structure factorsS(k, ω)/S(k).
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Figure 3. (a) Normalized intermediate scattering functionsF(k, t)/S(k) and (b) the dynamic
structure factorsS(k, ω)/S(k) for the state II (1673 K, 9.25 g cm−3) for k = kmin. These results
were obtained by means of MD simulation with a system of 8000 atoms.

Figure 4. (a) Normalized intermediate scattering functionsF(k, t)/S(k) and (b) the dynamic
structure factorsS(k, ω)/S(k) for the state III (1803 K, 6.8 g cm−3) for k = kmin. These results
were obtained by means of MD simulation with a system of 8000 atoms.

liquid mercury thus obtained are shown in figure 1. The inset shows the enlarged repulsive
part ofφ(r). The characteristic features ofφ(r) are as follows.

(i) The attractive well ofφ(r) for a metallic state is broader than those for a nonmetallic
state.

(ii) For state III, ourφ(r) is very similar to the Lennard-Jones 6–12 potential used
by Nagelet al [5]. However, we do not go into details of the density dependence of the
attractive part ofφ(r) for the following reason: since the structure of liquids is mainly
determined by the repulsive part of the pair potential and the attractive part has only a small
effect on the structure, it is not easy to derive the attractive part ofφ(r) accurately from
the experimental structure factor.

(iii) The repulsive part ofφ(r) for the liquid mercury is harder than those for liquid
rubidium and caesium.

(iv) When the state changes from I to II, the repulsive part ofφ(r) shifts to a shorter
distance. On the other hand, the repulsive part ofφ(r) shifts to a longer distance again
when the state changes from II to III.
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Figure 5. (a) Normalized intermediate scattering functionsF(k, t)/S(k) and (b) the dynamic
structure factorsS(k, ω)/S(k) for the state II (1673 K, 9.25 g cm−3) for k = kmin. These results
were obtained by means of large-scale MD simulation with a system of 64 000 atoms.

Figure 6. (a) Normalized intermediate scattering functionsF(k, t)/S(k) and (b) the dynamic
structure factorsS(k, ω)/S(k) for the state III (1803 K, 6.8 g cm−3) for k = kmin. These results
were obtained by means of large-scale MD simulation with a system of 64 000 atoms.

3.2. The dynamic structure factor

To calculate the dynamic structure factor we perform the MD simulation using the effective
pair potential obtained by the inverse method. A cubic MD cell with periodic boundary
conditions is used. First, we carry out the MD simulation with 8000 atoms. The length of the
side of the MD cellL is 62.4, 66.0 and 73.2̊A and the corresponding minimum wavenumber
kmin = 2π/L is 0.101, 0.095 and 0.086̊A−1 for the states I, II and III, respectively. The
parameters used in our MD simulation for these three states are shown in table 1.

Constant-temperature MD simulation [13] is employed. The cut-off distance of the
effective pair potential is 12.0̊A. The time step is 4.8×10−15 s and the physical quantities
are obtained by averaging over 200 000 time steps after the equilibrium state is reached. The
normalized intermediate scattering functionsF(k, t)/S(k) for the threek-values for the state
I and corresponding dynamic structure factorsS(k, ω)/S(k) are shown in figure 2.F(k, t)
for small k, e.g. k = 0.1 Å−1, clearly oscillates with the slow decay. With increasing
k, the amplitude of the oscillation ofF(k, t) becomes smaller. As a result, though the
side peak ofS(k, ω) is well defined for a smallk, it becomes to be less clear for largek.
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F(k, t)/S(k) andS(k, ω)/S(k) for the states II and III fork = kmin are shown in figures 3
and 4, respectively. With decreasing density and increasing temperature, the oscillation of
F(k, t) becomes vague and hence the side peak ofS(k, ω) becomes broader even forkmin.
For the state III, the side peak cannot be recognized any longer even forkmin, when the MD
simulation is carried out for a system with 8000 atoms. To obtain the velocity of sound from
the dispersion relation at low density and high temperature, we have to calculateS(k, ω)

for a smallerk. Therefore we perform the MD simulation for a larger system consisting of
64 000 atoms for the states II and III. The sideL of the cubic MD cell is 132.1 and 146.4̊A
for the states II and III, respectively; these values are twice those for the system with 8000
atoms. Figures 5 and 6 showF(k, t)/S(k) andS(k, ω)/S(k) for the state II and those for
the state III forkmin for the case of 64 000 atoms (see table 1), respectively. Comparing
figures 5 and 6 with figures 3 and 4, we see that the side peak ofS(k, ω) for the state II is
sharper and, even for the state III, it can be seen clearly.

Since the correlation length becomes very long near the critical point, it may be
comparable with or even exceed the size of the MD cell. Therefore it is necessary to
check whether the structure of the liquid depends on the system size or not, in particular
near the critical point. As long as we compared dynamic structure factors obtained at the
same wavenumberk for the two system sizes with each other, a clear size dependence of
the structure was not found for the thermodynamic states studied here.

3.3. The velocity of sound and the effective pair potential

The dispersion relationsωmax(k) obtained from the longitudinal current correlation functions
are shown in figure 7(a). These results were obtained by means of MD simulations with
8000 atoms, except for ak smaller thankmin corresponding to 8000 atoms. In the small-k

region,ωmax(k) becomes smaller with decreasing density, which means that the velocity
of sound decreases with decreasing density. Corresponding to the state dependence of the
peak ofS(k), the minimum in these dispersion curves becomes shallower and shifts to a
smallerk with decreasing density.

Figure 7. (a) Dispersion relations for the longitudinal current correlation function for the three
states I, II and III. (b) Dispersion relations for the dynamic structure factor for the three states.
The fitted lines for smallk are also shown and their gradients correspond to velocities of sound.
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Figure 8. The density dependence of the velocity of soundvs obtained by means of MD
simulation (large open circles) and experimental data (the other, small symbols). The velocities
of sound obtained using only the repulsive part of the effective pair potentials are also shown
(large solid circles).

The dispersion relationωp(k) obtained from the side peak of the dynamic structure
factors in the small-k region is shown in figure 7(b). Note that these dispersion relations
cannot be obtained beyond the wavenumbers for which the side peaks ofS(k, ω) can still
be recognized. The results are well fitted by the straight lines. The values ofvs obtained
from the gradients of these lines are compared with the experimental data [4] in figure 8.
It is found that the calculated velocities of sound are in very good agreement with the
experiments and that the characteristic features of the density dependence of the velocity of
sound are well reproduced.

To investigate which parts of the effective pair potentials play an important role in the
density dependence of the velocity of sound, we performed MD simulations using only
the repulsive part ofφ(r) and obtained the corresponding sound velocities. The results
are shown by the big solid circles in figure 8. We find that, comparing with the density
dependence of the velocity of sound obtained with the full potential, the results obtained
using only the repulsive part ofφ(r) show the characteristic features clearly at the M–NM
transition. The attractive part ofφ(r) tends to reduce the velocity of sound and this effect
increases with decreasing density. Furthermore, the attractive parts make the inflection of
the velocities of sound at 9 g cm−3 weak. We conclude from these results that the density
dependence of the repulsive part ofφ(r) plays a crucially important role in the velocity of
sound having the inflection of its density dependence at the M–NM transition.
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Figure 9. Density variations of the effective packing fractionη̄ and the effective diameter̄σ .

To clarify the density dependence of the repulsive part ofφ(r) quantitatively, we define
‘the effective diameter’σ̄ by φ(σ̄ ) = 0 in the repulsive core region and ‘the effective
packing fraction’η̄ as

η̄ = N(4π/3)(σ̄ /2)3

V
= nπσ̄ 3

6
(14)

whereV is the volume of the system. The density variations ofσ̄ and η̄ are shown in
figure 9. With decreasing density,̄σ becomes smaller at first and then becomes larger
after the M–NM transition occurs. It should be noted that a similar density dependence
of the hard-sphere diameter was found by Götzlaff [14], who analysed the thermodynamic
properties of liquid mercury on the basis of the hard-sphere model.

As a result of this behaviour of̄σ , the density dependence ofη̄ changes at the M–NM
transition in a similar way to the velocities of sound. It is considered that, in general, the
velocity of sound is faster in a system with a higher packing fraction than in a system with
a lower packing fraction. This is why the velocity of sound shows the steep decrease up to
near the M–NM transition region and why its rate of decrease becomes smaller over that
region until the critical region is neared.

The velocity of sound in liquid argon slows down linearly with decreasing density up
to near the critical point and its gradient with respect to the density lies between those of
the metallic state and the nonmetallic state of liquid mercury [1]. As for the gradient of
the velocities of sound, the exponent logvs/ logρ at constant temperature was estimated by
Okada and co-workers [4]. They found that the exponent for liquid mercury in the metallic
state is 4 or 5, while it is 3 for argon. If the effective pair potential does not depend on the
density, as in the case of liquid argon, the gradient of the velocity of sound with respect
to the density would be the mean of the values for the metallic states and the nonmetallic
states of liquid mercury. To confirm this, we performed a MD simulation for the three states
I, II and III using φ(r) obtained for state III (6.8 g cm−3 and 1803 K) and calculated the
velocities of sound. We found that the velocity of sound thus obtained does not bend but
decreases almost linearly with decreasing density and its gradient with respect to the density
certainly takes a value intermediate between those of the metallic and nonmetallic states.

Though there are no experimental data available for the self-diffusion coefficientD of
liquid mercury, we calculated it from equation (12) for the three thermodynamic states and
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Figure 10. The density dependence of the self-diffusion coefficientD calculated from the
velocity autocorrelation function obtained by means of MD simulation.

show our results in figure 10. It is seen from this figure that the density dependence ofD

changes at the M–NM transition, reflecting the variation of the packing fractionη̄.
In a metallic state the effective pair potential is determined by the ion–ion direct

Coulomb interaction and the indirect interaction due to the screening effect of conduction
electrons. With decreasing density, the screening effect becomes weaker. In fact, it is
well known that, with decreasing density or decreasing screening effect, the parameterσ̄

of the effective pair potential of liquid alkali metals obtained from the pseudopotential
perturbation theory becomes smaller. In addition to this decline of the screening effect,
we should consider the fluctuation of the ionic structure near the M–NM transition point.
Since density fluctuations increase with decreasing density, the valence electrons tend to
localize rather than spread over a whole system like a uniform electron gas. This electron
localization can be a reason for the repulsive part shifting towards a shorter distance with
decreasing density in the metallic states. On the other hand, at lower densities than that
at which the M–NM transition occurs, the liquid tends to change, with decreasing density,
from a mixture of ions and valence electrons to one of neutral atoms and clusters. Since the
diameter of a neutral atom is larger than that of an ion, the repulsive part of the effective
pair potential shifts to a larger distance.

4. Summary

The density dependence of the velocity of sound in liquid mercury along the liquid–vapour
coexistence curve is investigated by means of large-scale molecular-dynamics simulation
with the effective pair potentials derived from the experimental static structure factors by
the inverse method. The calculated velocities of sound are in very good agreement with
experiments; the inflection of the density dependence of the velocity of sound is well
reproduced. We have shown that the change in the density dependence of the velocity
of sound at the M–NM transition can be explained by the change of the repulsive part
of the effective pair potentials. We have also found that the density dependence of the
self-diffusion coefficient changes at the M–NM transition for the same reason.
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